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Introduction 

The weak isomorphism problem in ergodic theory has a long and interesting 

history. In 1963, Sinai [29] asked whether it was possible to find an ergodic 

automorphism T such that: 

(1) T has a weakly isomorphic factor which is not isomorphic to T. 

The famous result of Ornstein [20], [21] saying that two Bernoulli shifts are 

isomorphic iff they have the same entropy, shows that (1) could not hold for 

T a Bernoulli shift. In 1968, Hahn and Parry [6] introduced the notion of the 

coalescence of an automorphism. If T is coalescent (i.e. if each measure-preserving 

transformation commuting with T is invertible) once more (1) cannot hold for it. 

In particular, all automorphisms with quasi-discrete spectrum and those with no 

spectral type of infinite spectral multiplicity ([1], [18]) are coalescent (these are 

examples of automorphisms of zero entropy). 

In 1974, Polit [25] constructed a zero-entropy mixing example satisfying (1). 

Later, one of the authors (Rudolph [26]) generalizing on Polit's work introduced 

the notion of minimal self-joinings (MS J) of an automorphism. It is known that 

if T enjoys MSJ then the infinite direct product automorphism 

(2) T × T x --. satisfies (1). 

In [101, [12], [26] various examples of automorphisms with the MSJ property 

(hence, of zero entropy) have been constructed, tn [13], the authors noticed that a 

weaker property of T, called simplicity, was enough to get (2). In 1986, Thouvenot 

[30] proved that if T was a Gaussian automorphism with simple spectrum then 

(2) holds true. Recently, in [11], the authors have shown that property (2) is a 

"typical" (with respect to the weak topology [7]) property of automorphisms of 

a Lebesgue space. 

The examples of automorphisms satisfying (1) presented above are all weakly 

mixing, however, it is very likely that no one of them enjoys the loosely Bernoulli 

(LB) property (a zero entropy automorphism is LB iff it is induced from an 

irrational rotation [22]). In [4], [15], [16] some examples of LB automorphisms 

satisfying (1) have been constructed. 

However, all the examples of ergodic automorphisms for which (1) is satisfied 

were constructed as some (essentially) infinite self-joining (see [3]). Hence, a nat- 

ural question arises whether or not we can construct an ergodic automorphism 
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satisfying (1) which is not an (essentially) infinite self-joining of another auto- 

morphism. In [31, it was noticed that if T: (X, B, it) ~ (X, B, #) is an irrational 

rotation and ~: X ~ X is a measurable map then whenever the automorphism 

(3) Tv:(XxX,#×#)---*(XxX,#x~), Tv(x,y)=(Tx,~(x).y) 

is ergodic, it cannot be isomorphic to an (essentially) infinite self-joining. The 

automorphisms of the two-dimensional torus of the form (3) will be called Anzai 

skew products. In [17], an ergodic Anzai skew product without the coalescence 

property was constructed. Although, using the same methods, an improvement of 

the construction from [17] to obtain the stronger (1) property of T~ is possible, we 

do not go in this direction any further since, as noticed in [3], in the ¢ohomology 

class of the ~ from [17] there is no absolutely continuous coeycle. (We recall, that 

in the cohomology class of an arbitrary cocycle there is one which is continuous 

[14], [27].) In particular, no coboundary modification of the T could lead to a 

diffeomorphism of the two-dimensional torus. 

The main problem we deal with in this paper is a construction of an ergodic 

diffeomorphism preserving a smooth measure on a finite dimensional compact 

smooth manifold and satisfying (1). Such a construction is impossible on the 

circle as from Denjoy's theorem each Cl-diffeomorphism on the circle without 

periodic points and with derivative of bounded variation is strictly ergodic and 

isomorphic to a rotation. In contrast to this, on the two-dimensional torus, we 

will construct two ergodic C~-diffeomorphisms (preserving Lebesgue measure) 

which are weakly isomorphic but not isomorphic, In Section 5 we deal with C ~-  

diffeomorphisms of the form (3) proving that their C~-centralizer is uncountable. 

Some open questions are listed at the end of the paper. 

The results of the paper were obtained during the visit of the third author to 

N.C. University in Torufi in July 1990. He would like to thank the Math Institute 

there for supporting the visit. 

1. Def init ions  and N o t a t i o n  

Let (X, B, #) be a Lebesgue space with a normalized measure #. Assume that 

T: (X, B, V) , (X,/3, p) is an invertible measure-preserving transformation (i.e. 

T is an a u t o m o r p h i s m ) .  Let C(T) denote the centralizer of T which is the set 

of all not necessarily invertible measure-preserving transformations commuting 

with T. Assume that .4 C B is a T-invariant sub-,r-algebra. Then, the quotient 
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action of T on A is called a factor of T (we will identify factors with T-invariant 

sub-(r-algebras). 

Let G be a compact abelian metric group with Haar measure m. A measurable 

function ~ : Z x X , G is called a cocycle  if ~("+k)(x) = ~(")(x). ~(k)(T"(z)). 

Any such is clearly of the form ~(")(z) . -1  = H~=0 %0(r~(x)), n >_ 0, ~(-)(~) = 
(I'ITln %0(TJ(x))) -1, n < 0, where %0(z) = ~(1, z) is the "generator" of the co- 

cycle. Abusing language we will refer to %0 as "the" cocycle although we will be 

referring to the cocyde it generates. A cocycle %0 determines an automorphism 

T ,  (called a G-ex tens ion  of T) on (X x G, B,/~) by 

(4) T,(x,  g) = (T=,g .  v(=)), 

(/~ is the product o -algebra and /] = # x m). A cocycle %0 is said to be a 

coboundary (or a G - c o b o u n d a r y  if we need to emphasize the role of G) if it 

is of the form 

%0(x) = f (Tz ) / f ( z )  

for a measurable function f :  X ~ G. We say that two cocycles %0, ~b: X ~ G 

are c o h o m o l o g o u s  if %0/~b is a coboundary. Assume that T is ergodic. We will 

say that ~o is e rgod ic  if T~0 is. The following is classical [23]. 

f %0 is ergodic ifffor no character X 6 G,X # 1, (5) / the cocycle X o %0 is an Sl-coboundary. 

If T~o: (X x G, ~) , (X x G,/]) is a G-extension of T then it has a system of 

factors called n a t u r a l  f ac to r s  arising as follows. 

Let H C G be a compact subgroup of G. Consider 

9H = { i e 9: (Vh e H) ohl = ~i }, 

where orb(x, g) = (x, hg). The corresponding factor, denoted by T~,H, is simply 

the action of T~, on (X x G/H, t3H,~). When G = S t such H are either finite or 

all of S t. 

PROPOSITION 1 ([13]): Assume that T~ is an ergodic G-extension of T and let 
.4 be a factor of T~ such that 

{BxG::B6B}cA. 
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Then A is a natura / fac tor  of Tv. 

Let T: (X, B, At) , (X, B, At) be an ergodic rotation on a compact monothefic 

group X with Haar measure # (i.e. up to isomorphism T is assumed to have 

discrete spectrum). 

PROPOSITION 9. ([19]): Suppose that qo, ~b: X , G are ergodic cocycles. T~ 

and T~: axe isomorphic if[ there ex/st S 6 C(T),  a measurable map f :  X ~ G 

and a continuous group automorphism v: G ~ G such that 

o S/v(~b) = f o T / f .  

Remaxkl:  We will also consider maps ~p: X ~ R. As before we abuse language 

and call such a function a cocycle  if it is measurable. We write the actual cocycle 

a s  

V(")(x) = ~(x) + %o(Tx) + . . .  + ~ ( T " - ' z )  

for n > 0, ~o (°) = 0. If n < - 1  then 

V(")(z) = - ~ ( T - ' x )  . . . . .  v(T"x). | 

2 .  G a m e  p l a n  

From now on we assume that X = S x (the circle) and p is Lebesgue measure. 

Let Tz = x .  e 2~i= for some irrational ot 6 [0, 1). A s s u m e  that  7~ : X ~ X is an 

ergodlc cocycle and let T~ : (X × X,/~,/~) ~ (X × X,/3,/2) be the corresponding 

Anzai skew product. Suppose that .,4 C/3  is a factor that is weakly isomorphic 

to T~,. Then 

{B x X: B 6 6} C A 

since T~o is ergodic and the o-algebra {B x X: B 6 B} is determined by the 

eigenfunctions of T,.  In view of Proposition 1, A has to be a natural factor. 

As T~o is not isomorphic to T, H # S t and so is finite, i.e. the kth roots of 

unity for some k >_ 1. We conclude that the action of T~o on .A is isomorphic to 

T~k: (X x X,/3,/~) , (X x X, B,/~). Notice that if T,2~ and T~, are isomorphic 

then certainly T~o and T~ok are weakly isomorphic and from the discussion above 

this is the only way to get such an example within the context of Anzai skew 

products. Therefore, using k = 2 to construct two weakly isomorphic Anzai skew 



38 J. KWIATKOWSKI ET AL. Isr. J. Math. 

products that are not isomorphic we will find a and/3 from [0, 1) and a cocycle 

X such that if we denote T z  = z .  e 2'~i~', S x  = x .  e 2"i~ (x E Sx), then ~: X 

(6)  

(7) 

T~ is ergodic, 

~(Sx) / ( tp (x ) )4  = f ( T x ) / f ( x )  

for a measurable function f :  X ~ X and moreover 

J" for an arbitrary U E C ( T )  there is no measurable solution 
( s )  

g: X , X of the equation ¢2(Ux) / (~(x) )  +2 = g ( T x ) / g ( x ) .  

Indeed, by (6) and (8) and Proposition 2 it follows that T~ and T~2 are not 

isomorphic, while (7) and Proposition 2 state that T~ and T~, are isonmrphic. 

Suppose that ~2: X ~ X is continuous. Let ~: l:t , t t  be its natural 

continuous lifting with ~(0) E [0, 1). The number q~(1) - ~(0) E Z is called the 

degree  d(~) of ~. If ~ is absolutely continuous and d(~) # 0 then, by a result of 

[3], T~ is coalescent and (1) fails to be true. Hence, we have to consider the case 

of d(~) = 0, in other words we study continuous maps ~: X ~ R (or which is 

the same q~: R ~ l:t is periodic of period 1). For such a case, in order to solve 

(7), it is enough to find a measurable solution ]: R ~ R periodic of period 1, 

to the equation 

(9)  + - = + 

By taking the exponentials in (9) we get (7). We will call ] in (9) a t r a n s f e r  

function. 

R e m a r k  2: Transfer functions are rather "wild" functions. This can be made 

precise by the following observation. 

Let T: (X, B, #) ----* (X, 13, #) be an ergodic automorphism. Assume that S E 

C ( T )  is invertible. Moreover, assume that ~3: X , R is a cocycle, ~ E L k ( X ,  #) 

and ~ is not an R-coboundary. If there exists a measurable ]:  X ---* R satisfying 

~ ( S z )  - k ~ ( x )  = ] ( T z )  - ] ( x )  

(x E X) for some k E Z, IkI > 1 then ] ¢[ L ~ t ( X , #  ). 

Indeed, let us define an operator As, k: L ~ t ( X , # )  ' nit(X,~,) by putting 

As,  k(g) = g o S - k • g. This operator is linear and continuous. We will show 

that it is invertible. Put L: L k ( X  , #)  ) L k ( X ,  #),  L(g)  = k .g o S -1.  We have 
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lIL-nll = i/[kj n, n _> i, so M = E.:I L-" is well defined and ad-Z)oM = H. 

Thus Id - L is invertible and so also is As, k = (Id - L) o S. 

Suppose, now, that f E L~(X ,  #). Then, since S E C(T), 

: As,~( ] o T - ]) : (As,~]) o T - As)k(]) 

and ~ is a coboundary, a contradiction. 1 

We will have to show that the left side eocycle in (9) is an R-coboundary. We 

will use the following rather standard sort of criterion ([28]). 

PROPOSITION 3: Let T: ( X , B , # )  ~ ( X , B , # )  be an ergodic automorphism. 

Assume that ¢: X ----* R is a cocycle. Then (b = ] o T -  ] t'or a measurable 

]: X , R iff there exists a set S C X ,  #(S) > O, such that 

(lO) I,~(~)(~)I _< I 

whenever x, Tkz  6 S and k E Z. 

Proof." Suppose that ] :  X ~ R is measurable and 

(11) Z(T:) - ](~) = ~3(:). 

Since ] is measurable, there is a real number r such that the set 

S = {x e X: [ ] (x ) -  r[ < 1/2} 

has positive measure. It follows from (11) that ¢(k)(x) = ] (Tkx)  - ](x),  k E 

Z, x E X. Now, if x, Tkx E S then [¢(k)(x)[ _< [](Tkz) - r[ + If(x) - r[ < 1. 

Suppose, now, that (10) is satisfied for a set S of positive measure. The 

ergodicity of T implies that for a.a. x E X there is k = k(x) E Z with Tkx E S. 

Therefore the set 

A(x) = {¢(k)(x): Tkx E S, k E Z} 

is nonempty. Moreover, it is bounded above. 

Indeed, choose k0 E Z with Tk°x E S. Let k be any integer, k # k0, and Tkx E S. 

Then 

¢<k)(z) = ¢(k°)(x) + ¢<k-k°)(Tk°z) _< ¢<ko)(z) + 1, 

as Tk°x, Tk-k°(Tk°x)  E S and (10) holds true. 
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Let us define a function ]:  X , R by 

](x)  = - sup A(x). 

Hence, fi is finite for a.e. x • X and is measurable since 
oo 

{x: f (x)  <_ -b}  = U [{z:¢(k)(x) >-b}NT-k(S) ]  
k = - o o  

for every b • R. Since A(Tz) = A(x) - (b(x), we have ](Tx) - ](x) = (b(x). 

In applications, to show that ¢ is a coboundary it is enough to have a set 5' of 

positive measure with the property that 

[¢(k)[(z) _< 1 whenever x,T*x • S for all k _> 1. 

Indeed, if k = 0 then (10) holds true. Suppose that now k < 0 and z, Tkz • 

S. Then Tkx, T-k(T~x)  • S with - k  > 0 so ]¢(-k)(Tkz)[ _< 1 and since 

16(-k)(Tk )l = we  done.  

COROLLARY 1: Assume that ~ = {F, T F , . . . ,  T" - I  F} is a Rokhlin tower for T, 

/J(F) > O. Let ~: X -----+ R be a cocycle satisfying 

n--1 

(12) ~ = 0 on X \ U TiF' 
i=0 

n - 1  

(13) E ~(Tix) = 0 for a • F. 
i----0 

then ~ is an R-coboundary. 

Proof: It suffices to apply Proposition 3 with S = F. | 

COROLLARY 2: Let q~i: X ~ R be a cocyde such that there ex/sts a set Si with 

/~(Si) > 1 - ~ 0 / 2  i forsome~o < 1 and x ,T~z  • Si implies I~(~)(z)l < 1/2 i, k _> 

1, i = 1,2, . . . .  

f f  the series ~i°°__, 9~i(x) is convergent a.e. then the cocycle 9~(x) = ~ Z I  ¢i(x) 

is a coboundary. 

Proof: Set S = Ni°°__l Si and observe that/~(S) _> 1 - e 0  > 0. Now, i fz ,  Tk(z) • 

S then z, Tk(z) e Si for every i and therefore kSlk)(z)[ < 1/2 i which implies 

I (k)(x)l < 1. m 
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Remark 3: Gottschalk and Hedlund in [5] have proved that if T: X ~ X is 

a minimal homeomorphism of a compact metric space and if @: X , R is a 

continuous map then ~3 = f o T -  / for a continuous f :  X , R iff there exists 

a point x0 E X such that {~(k)(x0): k > 0} is bounded. Proposition 3 is an 

analogue of that theorem in the measure-theoretic case. | 

Given an irrational a E [0, 1) and hence T: X * X, where Tx = x .  e 2~ia we 

seek/3 and ~: X ~ R with (6),(8) and (9). Certainly, this is not possible for an 

arbitrary a if we want ~ to have a smooth coboundary modification. For instance, 

for irrationals with bounded partial quotients such a ~ has to be cohomologous 

to a constant (classical small divisor arguments). We will deal with a 's  satisfying 

the following condition. 

Denote T(x) = z + a (mod 1), where x E [0, 1). Let a = [0: a l , a s , . . . )  be 

the continued fraction expansion of a with the convergents P,,/Q,,. Assume that 

some sequences {~k} with 

(14) 0 < ek < 1 / (10 .2  k) 

and {Ck}, with Ck > 0, are given. 

Definition 1: We say that ot E [0, 1) satisfies the (R) condition with respect to 

{ek} and {Ck} if there exists a subsequence ink} of natural numbers such that  

(RI) ETffi, q% • C~ < +oo, 
a 2 n k + !  

(R2) 2----3--- < ek, k = 1, 2,. .  
a 2 n  ~,.~ l " ' 

If, besides, 

(P~) a~n.+, = 2p(k)q(k), where p(k) > ~ ,  q(k) / co, 

(R4) Q~.. > t /d ,  

then we say that a satisfies the full (R) condition. I 

THEOREM 1: The set o[ a 's satisfying the rid] (R) condition with respect to {ek}, 

{ Ck } is residual. 

The proof of Theorem 1 and some more facts concerning properties of the 

continued fraction expansion of a are postponed to the appendix. 
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Suppose, now, that a E [0,1) satisfies (R2) and (R4) along a subsequence {nk}. 

Denote 

r ( k )  --- a2n~q.1, hk = Q2nk 

J~ = [0,Q2,~a (rood 1)), Ik = [0, a2.~+1. Q 2 ~ a  (mod 1)), k >_ 1. 

Then, we have 

(15) ~k = {[k, T I k , . . . ,  ~ h k - l h }  is a Rokhlin tower,  

hk --1 

(16) (.J > 1 hk >_ 
i=0 

f Ik is the disjoint union of intervals J~, s = 1 ,2 , . . . ,  r(k), listed left 
(17) 

to right within Ik such that ~h , ( j~ )  = J~+l, s = 1,2, . . .  , r(k)  - 1, 

(this is just to say that ~hh translates Ik by the length of J r )  

Ik+l C J#, k _> 1, and whenever an interval from ~k+l is contained 
(18) in J#, its r(k)hk - 1 iterations are also in ~k+,. 

The proofs of (15) - (18) can be found in the appendix. 

Remark 4: Each a satisfying the (R) condition has to be irrational (from (R2), 

the ai are clearly unbounded). | 

Given a satisfying (R2),(R3) and (R4) the number fl will be constructed as 

the intersection of a decreasing sequence of closed intervals. We will construct a 

cocycle q~: R , R (periodic of period 1) as 

OO 

= • e [0,1), 
i=1 

lit(k) where q~k will be nonzero only on v j=2 J~ and will be constant on each J~. 

In particular, the ~ constructed is not even continuous. We will show that for 

some appropriate choice of the values of ~i we can reach a eocycle ~ satisfying 

(6),(8) and (9). The cocyeles ~i will be R-eoboundaries, while ~ will not, actu- 

ally (6) will hold. Consequently, ¢i = ~iS - 4~i are all eoboundaries with the 

corresponding (from Proposition 3) set Si. We will be sure the sets Si satisfy 

the assumptions of Corollary 2 with ¢~k)(x) = 0, whenever x,7"kx E Si, k > 1. 

Some combinatorial conditions on the values of q3i will force (8) (and (6)) to 
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hold. Finally, we will show that under the assumption that c~ satisfies the (R) 

condition, 95i has a coboundary modification to a Coo-cocycle ~i in such a way 

that the cocycle ~/= ~i°°__ 1 ~i is a C°°-map cohomologous to 95. 

3. C o n s t r u c t i o n  of  weak ly  i somorph ic  Anza i  skew p r o d u c t s  t h a t  a re  

no t  i somorph ic  

We r e q u i r e ,  to satisfy (R2), (R3) and (R4), so the integers r(k), k _> 1, fulfil the 

following condition: 

1 
(19) r(k)  = 8p(k)q(k) ,  where q(k) > 1, q(k) ./~ oo and 1 /p(k)  < ~ek. 

Let us denote 
 i(j2) = rb!k) 

i = 0 , . . . , h k -  1, s = 1 , . . . , r (k ) .  

3.1 CONSTRUCTION OF j~. Let ~k, k > 1, be positive numbers such that 

~k 
(20) IJt----~ < min(1/2,~k/4), k .> 1, 

where IJtl denotes the length of J r .  We will inductively choose positive integers 

kz, positive numbers 61 and integers wl, l > 1, so that 

(21) ~l _< Sk,, 0 _< w~ _< hk, - 1, m a x ( 1 / h k , , w z / h k , )  < ~k, /4 
k~ < k~+l, l = 1 ,2 , . . . ,  

and 
the closed intervals Bt = [vt - $I/2, vl + ~t/2], 

(22) (k,) form a decreasing sequence. Vl = Cw~,8q(k~) 

Let us start with kl = 1, wl = O, 61 = ~1. Suppose that we have defined 

k~,.. .  ,kl, w l , . . .  ,wt and if1,... ,~t satisfying (21) and (22). Since 7 ~ is strictly 

ergodic, there exists a positive integer n such that for every x E [0, 1) 

(23) {x ,7" z , . . .  ,Tn- lx}  fq IntBi ~ 0. 

We choose kt+l, so that kt+l > kl and n / h k  < ek/4, where k = kt+l, which is 

(k,+~) , and according to (23) choose possible in view of (16). Now, take x = Co,sq(k~+~j 

vl+l = TW~+~(x) E Int(Bt). Then, we choose a positive number 81+1 satisfying 

61+1 ~ ~k, and Bl+l = [V/+l - ~ l + l / 2 ,  Vl+l + ~/+1/2] C Int(Bt). Therefore, the 
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sequences {~l}, {wt}, {kl} satisfy (21) and (22). Since [B, I < ~/¢t 

exists a unique j3 E [0,1) such that 

cx~ 

(24) ZeNB,. 
I----1 

0, there 

3.2 CONSTRUCTION OF qO SATISFYING (9). We will define a sequence {~l}l>l 

(k,) ,a  (~') (the of coeycles, ~l: [0,1) ~ t t  having disjoint supports. Let a 1 , . . .  ~(k~) 

sequence {r(kt)} is determined by (3.1)) be real numbers satisfying 

(25) 

( k t )  . . _ 
ar.Sq(kD.ro = 

¢~') = o, i = 1, . , q ( k t ) ,  a i . .  

S q ( k ~ )  

(~') = 0, E a s  
*-~-1 

4 r " (tot) .,8q(kt), r . a, , s = l , . .  = 1 , . .  , p ( k t ) - l .  

(26) 

(27) 

Let us define ~l: [0,1) ~ R by 

f ~ z ( x ) = 0  if x e [ 0 , 1 ) \ I ~ , ,  (28) / ~t(z) ao (~') if x e J ~ ,  s = 1 , . . . , r (k t ) .  

The conditions (18) and (25) guarantee that ~1 ,~2 , . . .  have disjoint supports 

and the cocycle 

(29) ~(~) = ~ ~,(x), • e [0,1) 
i = 1  

is well defined. 

(ka) 
T H E O R E M  2 :  H the numbers as , s = 1 , . . . , r (k t ) ,  I _> 1, satisfy (25), (26), 

(27) and ~ is defined by (28) and (29) then there exists a measurable function 

] : R - -*  R periodic of period 1 such that 

(30) ] ( x + . ) - ] ( x ) = ~ ( x + ~ ) - 4 ~ ( x ) ,  • err, 

where/~ is de~ned by (24). 

Proof: Put 

Then, we have ~ - 
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In order to prove that ¢ is a coboundary it is enough to show that the assump- 

tions of Corollary 2 are satisfied. Denote 

hh t --1 hi, I --1 r (k t )  

Z1 = U 7'(/") '  ,7,2= U U[bl,ksO--SJ2'bl, k;) +di,/2], 
i=h~ t - w t  i=0 s= l  

hh t --1 r (k l )  

z,= U U 
i=O s = r ( k t ) - - 8 q ( k l )  

and put 
h~ I --1 

S t=  U 
i----O 

It follows from (21) that 

In view of (20) and (21), 

By (19) and (21) 

~'~(h,) \ (z, u z~ u za u z,). 

p(Z1) < w:/hk, < ek,/4. 

. ( z ~ )  _< 6 /IJ~' t  _< ~k,/4. 

p(Za) <_ 1/pk, < e~,/4, #(Z4) < ek,/4. 

Therefore, by (14) and (16) 

4ekt > 1 _ 1  1 > 1 _ 1  1 
p(S,)> l - ~ k , -  4 -8"2 ~---7- 2 " ~ "  

It remains to prove that 

(31) if ~,~'~ e s, then 5~r) = 0, r >_ 1. 

LEMMA 1: Let A = ~ t j ~  for some 0 < t < hk~ - 1, 1 <_ p <_ r(kt). Suppose that 

x, Tmx E A for some m _> 1. Then 

(32) ~I m) = 0. 

Proof." We will divide the trajectory {z, Tx, . . .  ,Tm-lx} of x into a disjoint 

union of subsets according to the return times of x into A. More precisely, 

{x ,  T x , . . . , T m - l a g }  = { ~ n o ~ , . . . , ~ n l - l x }  

u {~",~,..., ~",-'~} u . . .  u {~"--,~,... ,~"--~},  
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where T " ' x  (i = 0 , . . . ,  u -  1) is the only point of { T n ' x , . . . ,  T " ' + ' - ' x }  belonging 

i ih , , - i  ~ i l k  ' and if p is the first return to A, no = 0, n~ = m. Notice that if y ¢ ~i=0 

Irh**-i ~iik,,  then necessarily y • J1 k* since the latter set is the base time of y to ~i=o 

l ib, ,-1 ~i ik , .  Since ~t vanishes outside of Ik,, of a Rokhlin tower refining the set ~i=o 

for i = 0 , . . . , u -  1, 

r(kt) 

~1(~"'~) + ~,(~-,+~x) +... + ~,(~",+,-~x) = --~ ~'). 
j= l  

The latter sum, in view of (25), (26) and (27) is equal to 0. Consequently (32) 

holds true. | 

LEMMA 2: Let A =TJ~~t k, n S t  (0 < t < hk, - w t -  1, 1 _ p _ <  < r(kt) - 1) and 

suppose  that  x,  T '"  x E A t'or some m >_ 1. Then 

~l'")(x) = ~ l " ) ( ~ x ) =  0, w12ere ~x = x + ~. 
~ ~t+w~(lkl Proof: Notice that if x , T ' " x  E A then Sx ,  T ' ( S x )  E T ~p+l)  because 

commutes with T. Therefore, the assertion follows from Lemma 1. | 

Tt [kt Trx B T " J  ' _ _ Assume that  x E A = _  ~p NSt, E = qk NSt for s o m e 0 < t , u  < 

hk, - Wl - 1, 1 < p, q < r(kt) - 1. Two different cases arise. 

CASE 1: q _ < p o r u  < t  if p = q .  Let n >_ 0 be the smallest positive integer 

such that Tr+"x E 5btJ~ ~. Notice that then T~+"x E A since :~ is an isometry. 

We have 

C + , , ) ( ~ )  = ~V)(x) + ~")(~). 
In view of Lemma 2, ~}r+n)(x) = 0 aald hence it is enough to prove that ~ , ) ( x )  = 

0, where y = T~x, and y, T " y  E St. 

CASE 2: p ~  qo r  t_< u if p = q .  Let n >_ 0 be the smallest positive integer 

such that :~"x E ~ j q h .  Then, in fact, Tnx E B. We have 

Since, 2b"x e B, ~b(~-")+"x • B, by Lemma 2, ¢ ~ - ' ) ( y )  = 0, where y = z, and 

y, T~y • Sz. 

Therefore, we have to prove that if y, T n y  E St with n = 1 , . . . ,  N - 1, where 
I Ihkt--1 Ti lk ,  then N is the smallest positive integer such t h a t  ~ N y  ~_ k)i=O 

(33) ~ " ) ( y )  = 0 .  



Vol. 80, 1992 MEAS UR E-P R ES ER VING D1FFEOMORPHISMS 47 

It follows from (24) and (28) that et vanishes on St except for Ik, V1 St and 

~hk~-w~ Ik~ N St and moreover 

- (k~) , (k~) 
(k,) (b [ Thkt-w' Y k' VI S! aq(kt)+p.rl = 4 a p +  1. (hi J~' fq S t = - 4 a p  , = 

In view of definition of St and n, it follows that (33) holds and the proof of 

Theorem 2 is complete. | 

3.3 CONSTRUCTION OF ~ SATISFYING (8) AND (9). According to Theorem 

(k,) (k,) 1 (I > 1) satisfying its assumptions 2, for an arbitrary choice {a 1 , . . . , a r ( k , ) j  _ 

we obtain ~ satisfying (9). In this section, we put some restrictions on these 

parameters to get (8). 

For Z5 = {0, 1, 2, 3, 4}, let v: Z5 ) Z5 be a group automorphism given by 

(34) v(i) = 4i (mod 5). 

Partition the set of natural numbers in any way into 

(35) N = N1 tA Nz, where N1, N2 are infinite. 

For l E Na we put 

( k , )  ( k t )  _ 1 
aq(kt ) = a2q(kl)+l = 
and for all other i = 1 , . . . ,  7q(kl) - 1 

(k,) = O, (36) a, 

for t = 7q(k,) , . . . ,  8q(kt) put 

(k,) = m_~ arbitrary, mt E Z with z..~j--1 aj a t  5 , m t  X--,Sq(kt) ( k D =  0 

((27) forces the rest of the aj /. 

THEOREM 3: If  q satisfies the assumptions of  Theorem 2 and, for l E N1, the 

cocycle ~ is de/ined according to (36) then ~ satisfies (8) and (9). 

Proof." We start with the following. 

(kt) 1 <_ s < r(kt) ,  l >_ 1, satisfy (25), (26) and LEMMA 3: If  the numbers  as , 

(27) then the cocycle ~ defined by (28) and (29) is constant on each interval 
-. . ( k t )  

T ' (h , ) ,  i = 1 , . . . ,  hk, - 1. Moreover, i f  we pu t  bi = ~ I T~(Ik,) then 

hk I --I 

(37) b, = 0 
i----1 
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holds. 

Proof: First, we will prove that 

• I I h a ~ - t  Tilkt_l-  1 or (38) for eachp  = 0 , . .  ,hk, - 1 either ~'P(h,) C X \ ui=o 
there exists i, 0 < i < hk,_, • r (k t - l )  - 1 such that TP(II,,) C ~,~(j]k,_,). 

Indeed, notice that (38) holds for p = 0 , . . . ,  hk,_,, r(ki-~) - 1 since h ,  C J : ' - ' .  

Denote Bz = Th~'-a'r(k'-t)-~(h,). For each z E Bi let n(z) be the first te- 

l lak~-t-1 TiIk~_~. Consequently, 7"~(~)x E J~-~.  Put  n = turn time of z into ui=0 

l r \ l  Ihkl-l-1 ~'iIkl_ 1 and min~es, n(z). Thus, ~ 'BI , . . . ,  ~ , - 1 B t  are contained in . .  ~ ~i=o 
~'"BtnJ~'-' # 0. If T"BI  is still a member of the tower ~k, = ( h , , . . . ,  T ~ ' - 1  h , )  

then h ,  f3 TnBt = $ and since ~'"Bt lq J~ '- t  = $ and 7' is an isometry, it follows 

that T"Bt C J~'-t. We can keep this argument going as long as we deal with 

the intervals of ~ , .  Hence (38) has been proved. 

Now, notice that whenever T°(h~)  C J~'-', the intervals 

: o+l(h 

are members of ~k, (see (18)). This observation shows that the values of ~ , _ ,  

o n  

h, 
• --,r(~- 1) (~1-1) 

are constant with sum equal to zero, since 2_.iffil ai  = 0. 

We can repeat the same argument for l - 2, l - 3 , . . . ,  1, which completes the 

proof. 

Suppose now, that for some V E C(T) there exists a measurable g: [0, 1) , X 

~.atisfying (8) and Vx = x .  e 2"i'r, 7 E [0, 1). Denote 

Given ~ > 0 , there exists l0 such that for all l > 10, l ~ NI there exist 

at least (1 - e)hk, • r (k i )  intervals of T/~, on which the values of function g are 
£ contained in a ball of radius ~ except for ~ of the mass of the interval. (This 

is a consequence of the measurability of g). Therefore, it is possible to find an 

interval A = Ti(J~o) for some 1 < so < 2 _ _ ~rk~ , 1 < i < h~, - 1 with the following 

properties 
]g(x) - cl ] < e for z E A except for a subset 

(39) of A of measure < ~. #(A), 
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(40) I ) ( A ) c  U U T+(J~' )N~'i(I+') 
i=0 s=0 

and 

for some l _ < j < h k , - 1 ,  

f Ig(x) - c l l  < ~ for  x e 7"i(h,) and [g(x) - ~21 < ~ for • e T J ( h , )  (41) 
except for sets of measure < ~./~(Ika ), 

where l is large enough, l E Nt .  Let B C TJ(Ik~ ) be that interval of r/k~ for which 

(42) ~(~(A) n B) > ~l,(B). 

Let us consider first the possible case ~(z ) /~ l ( f / z )  = g(7"z)/g(x), where ~1 = 

~2. We have 
~,(, h,,)(x) g(~, h,,~) 

(43) ~I"hk,)(~'x) -- g(x) 

for every • e a n f ' - , (n)  and every, = 1, . . . ,  [~(k~)]. 
Consider the set A of those s = 1 , . . .  ,[~r(k,)] for which [ g ( z ) -  c~ I < e for 

z ¢_ ~,i(jk,) except for a set of measure < e-/=(d~'). We then have 

(44) card(A) > (1 - 3 e )  

For any s E A we can make the following computations. Since (42) holds, we can 

~nd an • ~ AnP-'(B) for which (43) holds and Ig(~)-c,I < ~, Ig(T °h'~ x)-cl l  < 
e. Consequently 

[ g(x)g@"h"=) 1 t<2~ 

and by (43) 

v ("h") (x )  11 < 2~ . 
(45) [ p(ls.h~,)(~,x) 

(actually, the set of x satisfying (45) is of positive measure). 

Now, we will calculate V('~',)(~) ~d ~(,'~',)(f:x). We have, 

4 ( v )  = 4z(u) = ,,,,,-(~') if v e J 2  = a  1 <_ ~ <_ ,.(k,). 

Hence, by Lemma 3, for an appropriate u < ] r ( k t ) w e  obtain that  

Ck~) xl ~( 'h ' , ) (z)  = exp[2ri(a~Q, + . . .  + a,0+,),. 

~l 'h")( l~x) exp[21ri -(k,) _ (k,) ,, = • 2(a. + "" t- a.+,_l)l.  
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Denote 
d (0 . d (z) 

s o + l  " • • " so+s d~l) = J~i 'a~ k'), L s = 
(d(0 . d (t) ~2" 

• • " " u + s - - l )  

In view of (45), we have IL, - 11 < 2~ whenever ~ ~ A, so 

(46) L s = l  for s E A  

(all the numbers L, are fifth roots of unity)• Since (44) holds, there exists 

1 < s < [}r(kl)] - 8q(kt) such that s + so = m .  8q(kt )  and 

(47) card({s + 1 , . . . ,  s + 8q(kl)} 13 A) _> (1 - 4¢)Sq(kl). 

Let sz = So + s + q(kl ) ,  s2 = so + s + 2q(kz) + 1. Therefore, for an appropriate 

wl EN 

a(kt) (k,) = 4.,1 1 s, = a s 2  . g  a n d f o r a U j ,  [j - sd  < q(kt )  (i = l , 2 ) ,  a~k')=0. 
Consequently, there exists i e {0, 1} such that for all j ,  ]j - s / I  < ½q(kl) the values 

(k~) 1 But au+,+ 1 are all equal to zero except for at most one value of the form 4 ~ • ~. 

d(0 
Lp : Lp-1  • so+p 

r .J(1) ~2 I, Uu+p--1/ 

and since 

{4t(mod5): t _> 0} = {1,4}, (2.4t(modh):  t >_ 0} = {2,3}, 

card{1 <_ j <_ 2q(kt):  s + j q~ A} _> ½q(kl),  which contradicts (47). 

To complete the proof, instead of (43) we must also consider the equation 

(4s)  ~('h~,)(x) • ~ ( /h") (~ 'x )  = g(~'h~, x ) /g (~ ) .  

We obtain a contradiction in exactly the same way as for (43), because { - 2 .  

4t(mod5): t k 0} = {2,3}. | 

3.4 CONSTRUCTION OF ~ ALSO SATISFYING (6). We still have some freedom 

in our construction since for I e N2 the values (a~ k'), a (kt) • " ,  r(kt)J are arbitrary 

subject to satisfying the assumptions from (3.2)• Partition the set N2 into 
o o  

(49) N2 = U N2,t and each of N2,t is infinite. 
t = l  

Let 79 = {pt: t > 1} be an infinite set of prime numbers. For I E N2,t we define 

(a l(ka),... 'asq(kz) ](k~) ~ by (36), where 5 is replaced by Pt, t >_ 1. 
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THEOREM 4: I f  ~ satisfies the assumptions of Theorem 3 and is defined for 

l • N2 as above then ~ satisfies (6), (8) and (9). 

Proof: We have to prove (6), i.e. the ergodicity of Tw. Suppose that T~ is 

not ergodic. In view of (5), there exists an integer n ¢ 0 and a measurable 

g: X ~ X satisfying 

(~(x))" = g(Tx) /g(x) .  

Take Pt 6 P such that Pt does not divide n and consider only l 6 N2,t. By 

repeating the arguments from the proof of Theorem 3, given e > 0, for l large 

enough there exists so _< 2r(kt) such that 

• ...-d~0+~ ) - 1 ] < 2 e ,  

where s • h C ( 1 , . . . ,  [lr(kt)]} and 

card(A) _> (1 - 3e)r(k,)/3. 

Denote Ls t'1(kt) -(kt) ~. (k~) ~, = t ~ s o  , . . . ,d~o+sj and observe that Ls = L~-I • (dso+s j • Since 

s • A iff L, = 1 (because gcd(pt, n) = 1 and L,  are p t - roo ts  of unity), we can 

obtain a contradiction proceeding as at the end of the proof of Theorem 3. | 

4. A class of  R-cocycles  which can be s m o o t h e d  

Assume that for given sequences {ek} satisfying (14) and {Ck} to be specified 

later, we have an a E [0, 1) satisfying the (R) condition. We will consider cocycles 

given as 
O ~  

= Z 
k = l  

where ~k is zero outside of Ik and ~k]J~ = al k), t ---- 1 , . . . , r (k ) ,  i.e. 9~k is 

completely determined by (a~k),. _(k) . . ,  at(k) J E R r(k). We assume that 

r(k) 

(50) al = 0 
t = l  

(i.e. each ~t is an R-coboundary) . We will also assume that 9~ is bounded, so 

there exists K > 0 such that 

(51) lalk)l < •', k > 0, t = 1 , . . . , r (k ) .  
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Remark ,5: Note that the cocycles from the proof of Theorem 4 axe unbounded. 

However, by taking 

~l(x): = frac(~t(x)), z • R, 

where frac(c) denotes the fractional part of c _> 0 and frac(c) = - f r ac ( - c )  if 

c < 0 we obtain an R-cocycle which is certainly bounded but the sum in (50) is 

not zero for it. However this sum is an integer. Therefore, by either adding +1 to 

appropriately chosen negative components or subtracting +1 from appropriately 

chosen positive components we get a bounded by 1 cocycle ¢ for which (50) holds 

and exp(2ri~(x)) = exp(2~ri~(x)). Therefore, for the cocycle ~/, = exp(2~ri~) we 

have (6) and (8) although probably (9) is no longer true for ¢. However, we need 

rather (7) than (9) to hold. The fact that statement (6) holds true for ¢ follows 

from the following assertion whose proof is very like to the proof of Proposition 3. 
| 

Fact: Suppose that we are given a sequence of cocycles ~k: X ~ R, k : 

1 ,2 , . . .  such that the cocycle ~ = ~"]~°=1 ~k is well defined. Assume that there 

exist measurable sets Sk, p(Sk) > 1 - Sk, ~ = 1  6k < 1 such that if z, Ttx E Sk 
then ~(k0(x) = 1, where ~k = exp(2ri~k). Then the cocycle 

k=l 

is an SX-coboundaxy. 

Note also that the cocycles from the proof of Theorem 4 axe defined on a 

subsequence of the towers ~,. This is the same as saying that ~k = 0 for k 

{kl: l E N}. | 

We will put some restrictions on the sequences {r(k)} and {a~ k)," "", atk)r(k)J ~ to 

prove that in the cohomology class of ~ there is a C°°-cocycle. 

Let {Mk} be a sequence of integers, M~ >_ 2 such that only Mk of the numbers 
a l k ) , . ,  a (k) • , r(k) are different from zero. Let Rk be integers such that 

(52) R k > 4 " 2  k, k~_l .  

L e t S k =  ~ and 

(53) r/k = 6k/M~. 
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Let f : R  

(54) 

m_>0. 
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R be a periodic function of period 1 of C~-class satisfying 

/0' ~xm(o)dmf = 0 ,  f > O ,  c =  f ( x ) d x > O ,  

53 

Remark 6: 

isfying (54) is 

Pu t  

(55) 

Take n _> 2 and denote  

Such a funct ion cannot  be analytic.  An example of a funct ion sat- 

f ( x )  = exp( - ( s in2~rz ) -2 ) .  II 

B,,, = sup d m f ( z )  
• ~[o,1) dxm , m > O. 

1 n - l , 1  } { - .  A = A n =  O ' n '  " "  n ' 

n--1  

1 ~ f(zi), a(f,  a ,  {~,}) = ~- 
i =0  

i__+A~ i = 0 , . .  , n - 1. Since f is continuous, where xi E [ i ,  , /, 

given ~ > 0 there is no such tha t  for n > no 
(56)  

Io ( / ,  Zx.,  { x d )  - cl < ~ for every { x d . -  

Apply (56) with ~ = r/k to get a sequence of integers n~ such tha t  

(57)  la ( f ,  m , ,  {xi}) - -  el < l'/k for n >__ n~, k >__ 1. 

Let c~ satisfy the (R) condit ion with respect to {ek} and 

(MkRk)  k+l 
(58)  ck  - (1 - ~k) k " 

Actually, no harm arises if we assume that  addit ionally 

(59) r(k) = nkMkRk,  

where 

, k > 1 .  (60) nk > nk, _ 

Suppose tha t  some pairwise disjoint subintervals w l(k), w2(k), • • •, w(k)Mk of Ik, k > 

1 are given and the following propert ies  

(61) _ (k) J~ U . . . L J J k  wi = si si+nk-1 for some si >_ 2, si + nk < 8i+1. 
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(62) (3!si  < ~ 7 < s i + n k - 1 )  a (k )#O 
- -  - -  ,!  t 

_ (k)~ 
(i.e. ~Sk takes a nonzero value on only one subinterval in each w i ) hold. Put  

(63) d ~> = ~?) / (~ .  ,,~), t = 1 , . . . , , . (k) .  

Consequently, by (50) 

(64) ~ cl t) = O. 
t=l 

Let us define a Coo-function gi,k = gi ,k (x) ,  i = 1 , . . . ,  M k  as follows 

9~,k(~) = c ~ )  . f (  x - ai ,k ) i f x  • [a i ,k ,b i ,k)  = W[ k) a n d  0 otherwise 
bi,k -- ai,k 

and then put 

(65 )  ('~) and 0 otherwise. ek(x) = gl ,k(x)ifx • wlk) U .. .  UWM~ 

The functions ek are of C°°-class and they have disjoint supports• Therefore 

k>l  

is well-defined and ¢(0) = ¢(1) = 0. Note that 

d'" f (  ~--a,.k X l ' ( ~ ( x )  - g 2 )  . " " , ~  - ° ' , " .  - -  

dx  m s ~ dx  m 

Therefore, by (55), (63) and (51), (61) we have 

(k) 

c.  nk 

But , in view of (59) 

• B I i  I " - -  

if x E w~ k) 

1 K 1 

iw,~)l~ < - - B , , , .  - c . n k  ('~k" IJ~l)  m 

SO 

1 - e k  1 - e k  

hk . r(  k ) hk " nk  " M k  . R k  

dm(bk(X)[ < K ~ . M k ' R ~ ' h k ) , ,  < K _ . M k • R k ' h k ) k  
I dxm - - C n k  "'l~'n[ "1"--'---~; C.n"--"~. " lJm( "1"-----~; 
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for k > m. Hence, in view of (58) and (R1) the series ~koo--a dm6k(~) 
- -  d ~ g r a  

convergent and consequently ¢ is of C°°-class. 

55 

- -  is uniformly 

T H E O R E M  5 :  Let a E [0, 1) be irrational. Assume that a satisfies the (R) condi- 

tion with respect to {ek}, {Ck} and (14), (59), (52), (60), (58) hold. I r a  cocycle 

= ~k_>l ~k is given by the sequences {(a~ k), " '",  a(k),(k)/J a~ satisfying (50), (51), 

(61) and (62), then there exists 5: R --* R periodic of period 1, of Coo-class such 

that 

~(x)  - ~(~) = ~(~ + ,,) - ~(~) 

for a 1-periodic measurable ~t : R ---* R. 

Proof: Put 5(x) = Ek>x Ck(x), x E [0,1), where 5k is defined by (65). We 

have already shown that under our standing assumptions, 5(0) = 5(1) and 5 is 

of C°°-class. It remains to prove that the R-cocycle ~ - ¢ is an R-coboundary. 

We have 

(5 - ~)(~) = ~ ( S k ( z )  - ~ ( x ) ) .  
k_>l 

We will show that the cocycles 5k - qSk, k > 1, satisfy the assumptions of 

Sk = 

Corollary 2. Put 

Note that if x E J~ then 

(66) 

because 

r(k).h~--I 

hk --1 

U 
i=0 

~ " ( h  \ (w~ k) u . . .  u w (~))). Mk 

r(k).hk -1  

5~(~ ' x )  = o 
i=0 

Mh nh--1 nh--1 Mk 

i=0 i=0 j=O j=O i=1 

where c(-- k). f ( t j )  is the common value of al 

gl ,k( ¢(s'+j-1)hk (X)) . . . . .  gMh,k(~(SMk +j--1)hk (X))  

and (64) holds. 
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Now, take x E J~, and note that 

K 
(671 I ~ n " h k + ' ) ( x )  - ~ ( :k 'hk+' ) (x) l  < - .,7~, 

c 

where i = 1,... ,Ms. Indeed, 

Isr. J. Math. 

n k  n k  IlL 

= E = = Z ' ) E o ,  :(¢'), 
j=o j=0 j=o 

where 
y(i) = T;ak(z )  - a~,k 

bi,k - -  a i ,k  

Now 
j_<y(j)_<j+____~l, j = O , . . . , n k - 1  
n k  rgk 

and (60), (56) imply that 

(6s )  
]. n k  - -1  

I~ ~ f(v (j)) -cl < ,7~. 
j=O 

Moreover, ~(knk'hk+l)(x) = 2 )  as s o o n  a,s x E Jksl , i -.~ l ,  Mk. Hence, by 
$i  " ' '  ' 

(63),  (51) and  (6S) 

nk--1 

]~(k,k.hk+l)(x) _ ~(k,k.hk +I)(xl[ = %,(k). ~Z._, f( ~''Y(J)"- ~,-(k)'l 
j=0 

n k - - 1  

(k) . 11_2___ K 
= a'~i c.nk E f ( yO) )_ l [<  c,Tk 

j=O 

and (67) holds. 

Suppose, now, that x, T~z E Sk. Since Ck, ~ vanish outside of w~ k) U. " (~) • .  U W M k  , 

and (66), (50) and (67) hold, 

I¢~r)(x) - ~r)(z)l -< 2Mk[ K"  ~k], 

I Ihk--I ~'ilk, necessarily, it falls into J~. Since because if a point z returns to ~i=0 
(53) holds, the theorem follows, l 
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C O R O L L A R Y  3: There exist an irrational a and a cocycle ~: R 

c/ass such that 

, R of  Coo- 

(i) Texp(2,~i.¢) is ergodic, Tx  = x .  e 2~ria, z E X,  

( i i)  Texp(2:ri.t~ ) has a weakly isomorphic but not isomorphic factor. 

Proof." This is only to apply Theorem 5, Remark 5 and Theorem 4 to a satisfying 

the full (R) condition. I 

5. A n o t e  on  t h e  s m o o t h  centra l izer  o f  s m o o t h  A n z a i  skew p r o d u c t s  

Assume that ~: R ----* R is a periodic function of period 1 and of C°°-class such 

that 

(69) Tv = Texp(2riff): (X X X, ~) , (X x X,/5) is ergodic. 

According to [2], [19] if ,~ E C(T~) then there exist S E C(T),  f :  X 

measurable and n E Z \ {0} such that 

~ X  

(70) S(z, y) = Si , , ( z  , y) = (Sz,  f ( x )  . yn). 

We want to work with S E C(T~) which are smooth, equivalently, with .~'s for 

which f is smooth. Such S's are necessarily invertible. Indeed, if f is continuous, 

then SI,,, is a continuous map commuting with T~, and T~ is minimal (by (69)). 

Therefore, by a result of [24], SI,,, has to be invertible (i.e. n = +1). Denote 

Co~(Tv) = {S E C(T): (3]:  R ----* R periodic of period 1 ,  

of C °° - class) Sexp(2,~i]),, E C(T~)}.  

PROPOSITION 4: I f  an ergodic Anzai skew product T~ is given by q~ = exp(27riq3), 

where ~: R , t t  is periodic of period 1, of Coo-class and f~ ~(t)dt = O, then 

Coo(T~) is uncountable. 

We will need some auxiliary results. For t E R denote Iltll -- minnEZ It - hi .  

For a continuous function f:  R. , R periodic of period 1, we put Ilfll = 

supte[0,1] [f(t)[. 
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LEMMA 4 (([31, [91)): Let a • [0, 1) be irrational with the sequence {qn} of 

denominators of a. Let ¢: [0,1) , R,  f:~b(x)dx = 0 ,  ¢(0) = ¢(1) a n d ¢  be 

absolutely continuous. Then {~(q")} tends to zero uniformly on [0, 1]. 

LEMMA 5: Suppose that ~5: R ) R is periodic of period 1, f :  ~(t)dt = 0 and 

a"¢~(,) absolutely continuous. Then, the set E Cm(R)  with 

Cm(Tv) = {S • C(T): (3]:  R - -~  R periodic of period 1 

o f  C m - class) S~,p(2,~i]),, E C(T~)) 

is uncountable. 

Proof: Assume that Tx -- x • c2~iC',x • X eald let {qn} be the sequence of 

denominators of a. Then limn-.oo ][qnC~[[ = 0. By chooosing a subsequence of 

{qn}, if necessary, we can assume that 

(7x) Ilqn ll> Ilqk ll. 
kmn-'t-1 

Denote ep dP¢(~) dx, 'P = 0,1,. ,m. Then f :  (bp(x)dx - d'- '~(,)  d'-'~(o) = 0, 
= "" - -  ~ d z P - '  

and ¢ is absolutely continuous. In view of Lemma 4, Cp(q") , 0 uniformly on 

R.  By choosing a subsequence of {qn}, if necessary, we can assume that 

(72) II  (q-)ll >_ II  q')ll 
k=n+l 

for n large enough and p = O, 1 , . . . ,  m. Let r = (r0, ra , . . . )  be any sequence with 

ri ---- 0, 1, { _> 1. Denote 

n - - 1  

an,r= E r k q k a ( m o d l ) ,  en,r,p=(b (~: -~kq*)  
k=0 

Now, by (71), {(an,~): n _> 0) is a Cauchy sequence (rood 1) and by (72), 

{(¢n,~,p): n _> 0} satisfies the uniform Cauchy condition. Denote 

~. = l iman,. ,  (rood 1), 
n 

~r,p = lim¢,,,~,p (in C(R)) ,  p = O, 1 , . . . , m ,  

h = (in C(R)). 
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We have 

d p / r ( z )  _ ~r , , (x ) ,  p = o, 1, m .  
dxP """ ' 

Note that if r # r ~ then fir ~ fir,. Indeed, let i be the smallest number such that 

r / #  r'/. Then 

liar - ~.11 --- Ilqi~ll- ~ Ilqt~ll > 0. 
t----i+l 

Let S~x = x .  e 2~ri#'. It remains to prove that (Sr)exp(2,~i],),l E C(T~) .  But, we 

have 

I(T~) E:-o~ ~'~' (~, y) - (S~)ox~(~,:>,l(~, ~)I 

= I ( e x p ( 2 7 r i a n : ) . x ,  ~ (E;=~  ~kqk)(X). y) -- (exp(27ri. f l r ) ' x ,  exp(2rij?r(x)) • Y)I 

<_ []an,r --/~11 + I1# (E;-~ r~q~) _ LII ,0. 

Therefore, (Sr)exp(2,ri]), 1 c o m m u t e s  with T~ and the result follows. | 

P r o o f  o f  Propos i t ion  4: This is a small modification of the proof of Lemma 5. 

We have to choose a subsequence {q,,k } of {q,} satisfying 

(dm~(x)~(q-~)[[ > ~ I(dm~(x)~ (q"" 
d x "  : - , dx m : )1], 

r = k + l  

fork_>Nm,  m_>0. 

This can be done by the standard diagonal procedure. So, the arguments 

needed in the proof of Lemma 5 work well and the result follows. | 

6. R e m a r k s  

6.1 The constructions of this paper depend heavily on properties of a. We recall 

the result of [8] saying that if 

satisfies 

OL = [0: a l ,  a 2 , . . . )  

oo 

(73) E an+l 
n=0 Qn < +oo 
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then there is no nontrivial (i.e. not eohomologous to a constant) C2-cocyeles. 

The reader can see how opposite to (R1) the condition (73) is. We can slightly 

weaken (73) to ~n~=0 ~ < +oo for some 1 > 6 > 0 obtaining that each Q. 
Cl+6-cocycle of degree zero is cohomologous to a constant (see [3]). 

Notice, also that each number a satisfying (R1) has to be a Liouville number. 

Indeed, we have a~n~+l > Qk2n~. Hence 

1 1 1 < < - -  
Q2nhQ2n~+l - a 2 - -  [')k-'[-2 2nk'{-1Q2nh '~2nk 

and by (75) (in the appendix) 

is P2-h[ 1 
- Q2-k < ~ -+2 '  

'~2nk 
k = 1, 2, . . . .  

In particular, the set of a 's  satisfying the (R) condition is of zero Hausdorff 

dimension. 

In fact, if ~ is of C°°-class and ~o = exp 27ri~ is not T-cohomologous ( T x  = 

x + a) to a constant, then a has to be a Liouville number. 

6.2 Corollary 3 is the affirmative answer to the question formally raised by 

J.-P. Thouvenot. Also, it gives the negative answer to Question 4 from [17]. Can 

Corollary 3 be strengthened to get ~ analytic? 

6.3 In Corollary 3, we prove that there exists an ergodic Anzai skew product 

T~, where q0 is of Coo-class, such that there are two measure-preserving maps 

O, ~: (X x X,/5) , (X x X,/~) such that 

OT~ = T~,2O, ETv2 = TvE. 

The map 0 is also of Coo-class. However, E is not. Actually, E must not 

be continuous whenever O is. Indeed, otherwise O o ~ is a continuous map 

commuting with the homeomorphism Tv which is minimal. By a result of [24], 

O o E has to be invertible, so both ~ and O are invertible, a contradiction. 

Can we find two diffeomorphisms T1, T2 of S 1 x S 1 preserving Lebesgue measure 

/5 = # × #, ergodic with respect to/5, which are smooth factors of each other (i.e. 

O, ~ are smooth) but are not measure-theoretically isomorphic? 
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6.4 It is well-known ([14], [27]) that given rotation by some e 2 ' 'a ,  each cocycle 

~0: S x , S 1 is cohomologous to a continuous one. 

Given a eocycle ~: S 1 ----* S 1, can we find a conti,mous ~01: S 1 ~ S 1 with 

bounded variation such that ~1 is coho,nologous to ~? 

7. A p p e n d i x  

Let o E [0,1) be irrational, with the continued fraction expansion 

O ----- [0: a l , a 2 , . . . )  - -  a~ + 1 

a2 ÷ " ' .  

The positive integers ai are said to be the pa r t i a l  q u o t i e n t s  of o. Put  

(74) Q0 = 1 ,  Q, = a , ,  
P0 = 0 ,  PI = 1 ,  

Q,,+1 = a . + l Q n  + Q,~-I 

P,,+, = a .+ ,P , ,  + P . - , .  

The rationals P, , /Qn  are called the conve rgen t s  of a and the following 

(75) 

holds. The following formula 

1 
Io-  ~ 1  < Q.~).+, 

(76) Q.+,[IQ.oll + Q.IIQ.+,oll = 1 

holds true (where Iltll denotes the distance of a real number t from the set of 

integers). 

The result below is a direct consequence of the definition of the continued 

fraction expansion of a and (76). 

PROPOSITION 5: Let  n > 2 be even. Then,  the  intervals 

[0, Qno) ,  ~/%[0, Qno~), . . . , ~(a,,+,Qn+Qn_,)-I [0, Qna) ,  

[Q,+1o, 1),..., ~Q--'[Q,+,o, 1) 
axe pairwise  disjoint wi th  the  union equal to [0,1). Moreover 

[0, a , + ,  Q , a )  = [0, Q,,o) u TQ" [0, Q , a )  u . . . u T ( " + ' - ' ) Q "  [0, Q n a ) .  

Suppose, now, that 0 satisfies (R2) and (Rd). Then, from Proposition 1 and 

(Rd) it follows that (15), (17) and (18) hold true. Moreover, by (i) and (ii) of 
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the above proposition, we have 

h~ --1 

.(( U 
i=0 

T'h) ~) < Q2..-,IIQ2..~II + Q2.~IIQ2.~+~II 

so, by (75) and (74) 

h~-I 1 2 
~(( U T%)~) < 2Q~.~ • Q~,,~+, < 

i=0 a2n~+l  

Therefore, (16) follows. 

Proof of Theorem 1: Denote 

t 

XR,, ,  = {a E [0, 1): Q~ C, < 2 - '  for t = 1 , . . . ,  s}, 
a s + l  

2 
xR~,, = {,~ e [o, 1): - -  < min{~,,... ,~,}}, 

as+l 

XRa,s = 1o~ E [0, 1): as+, = p(s)q(s), p(s) > max( , . . . ,  ~es) , q(s) > s}, 

xR,,s = / ~  e [0,1): Os > max( , . . . , -~)}.  

Now, notice that if an irrational number o~ E XRi,,, e > 0 is small enough that 

each irrational fl, I 1 # - ~ l l  < e must belong to XRi,s. In other words, there exists 

an open set X~i,~ C [0, 1) such that XRi,s = X ° Ri,s n ([0,1) \ Q). Now, put 

t= l  s=t  

Notice that Us~t X~l,2s nXR2,2s NXRa,as NXR4,2s is dense and operi. Moreover, 

if c~ E A then certainly it satisfies the full (R) condition and the proof is complete. 

II 

References  

[1] 

[2] 

L.M. Abramov, Metric automorphisms with quasi-discrete spectrum, Izw. AN 

SSSR 26 (1962), 513-550 (in Russian). 

H. Anzai, Ergodic skew product transformations on the torus, Osaka J. Math. 3 
(1951), 83-99. 



Vol. 80, 1 9 9 2  MEASURE-PRESERVING DIFFEOMORPHISMS 63 

[3] P. Gabriel, M. Lemafiezyk and P. Liardet, Ensemble d'invariants pour les produits 

croisds de Anzai, Mdmoire SMF no. 47, tome 119 (3) (1991) (in French). 

[4] P. Gabriel, M.L. Lemaficzyk and M.K. Mentzen, Two-point cocycles with a strong 

ergodicity property, Bull. Pol. Ac. Sc. 37 no 1-6 (1989), 355-362. 

[5] W.H. Gottschalk and G.A. Hedlund, Topological Dynamics, Amer. So¢. Colloq. 

Publ. vol. 36, 1955. 

[6] F. Hahn and W. Parry, Some characteristic properties of dynamical systems with 

quasi-discrete spectrum, Math. Syst. Th. 2 (1968), 179-198. 

[7] P.R. Halmos, Lectures on Ergodlc Theory, Chelsea Publ. Co., New York, 1956. 

[8] P.Hellekalek and G.Larcher, On Weft sums and skew products over irrational 

rotations, Th. Comp. Sc., Fund. St. 62, 2 (1989), 189-196. 

[9] M. Herman, Sur la conjugaison differentiable des diffdomorphismes du cercle 

des rotation, Publ. I.H.E.S. 1976. 

[10] A. del Junco, A family of counterexamples in ergodic theory, Isr. J. Math. 44 

(1983), 160-188. 

[11] A. del Junco and M. Lemaficzyk, Generic spectral properties of measure-preser- 

ving maps, and applications, to appear in Proc. Amer. Math. Soc. (1991). 

[12] A. del Junco, A. Rahe and L. Swanson, Chacon's automorphism has minima/ 

self-joinings, J. Analyse Math. 37 (1980), 276-284. 

[13] A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, 

Erg. Th. Dyn. Syst. 7 (1987), 531-557. 

[14] A.W. Ko~:ergin, On the homology of functions over dynamical systems, Dokl. AN 

SSSR 281 (1976). 

[15] M. Lemaficzyk, Weakly isomorphic transformations that are not isomorphic, Prob. 

Th. Rel. Fields 78 (1988), 491-507. 

[16] M. Lemaficzyk, On the weak isomorphism of strictly ergodic homeomorphisms, 

Monatshefte Math. 108 (1989), 39-46. 

[17] M. Lemaficzyk and P. Liardet, Coalescence of Anzai skew products, unpublished 

preprint. 



64 J. KWIATKOWSKI ET AL. Isr. J. Math. 

[18] D. Newton, Coalescence and spectrum of automorphisms of a Lebesgue space, Z. 

Wahr. Verw. Geb. 19 (1971), 117-122. 

[19] D. Newton, On canonical factors ofergodic dynamical systems, J. London Math. 
Soc. (2) 19 (1979), 129-136. 

[20] D. Ornstein, Bernoulli shifts with the same entropy are isomomorphic, Adv. Math. 

4 (1970), 337-359. 

[21] D. Ornstein, Factors of Bernoulli shifts are Bernoulli, Adv. Math. 5 (1970), 349- 

364. 

[22] D. Ornstein, D. Rudolph and B. Weiss, Equivalence of measure-preserving trans- 
formations, Memoirs of AMS 37 no 262 (1982). 

[23] W. Parry, Compact abelian group extensions of discrete dynamical systems, Z. 

Wahl Verw. Geb. 19 (1969), 95-113. 

[24] W. Parry and P. Waiters, Minimal skew-product homeomorphisms and coales- 
cence, Compositio Math. (3) 22 (1970), 283-288. 

[25] S. Polit, Weakly isomorphic transformations need not be isomorphic, Thesis, Stan- 
ford Univ., 1975. 

[26] D. Rudolph, An example of a measure-preserving map with minimal self-joinings 

and applications, J. Analyse Math. 35 (1979), 97-122. 

[27] D. Rudolph, Z" and R" cocycle extens/ons and complementary algebras, Erg. 
Th. Dyn. Syst. 6 (1986), 583-599. 

[28] D. Rudolph, Inner and barely linear time changes of ergodic R'~-actions, Conf. in 

Mod. Anal. and Prob., Contemp. Math (Kakutani conf.) 26, (1983), 351-372. 

[29] Ya.G. Sinai, Weak isomorphism of transformations with invariant measure, Mat. 
Sb. 63 (1963), 23-42 (in Russian). 

[30] J.-P. Thouvenot, The metrical structure of some Gausdan processes, Proc. Erg. 

Th. Rel. Topics II, Georgenthal 1986, pp. 195-198. 


